DI1.30B.DECIBM .PG-1

Defense Information Infrastructure (DI1)

Common Operating Environment (COE)

Verson 3.0/B

Programming Guide (Digital UNIX and Al X)

February 19, 1997

Prepared for:

Defense Information Systems Agency

Prepared by:

Inter-National Research Institute (INRI)
12200 Sunrise Valley Drive, Suite 300
Reston, Virginia 20191

DI1.30B.DECIBM.PG-1

Table of Contents

(= = o SRR PRRUPRPR 1
1 Writing Programs USINg the COE TOOIScooiiiiiiiiie e 3
11 L@ V< VT PR 3
12 Additional Sources of INFOrMALIONoooiiiiiiiiie e 4
2. Application DevelOpMENt OVEIVIEWcooiiiieiiieeeiiee e sree e seee e ssee e sse e sneeeeseeeens 5
21 Writing Y our Application with the DI COE APIS........cuviiiiiiiieecee e 5
2.2 Building Your Application with the DIl COE APIS.........cooiiiiiiereeecee e 6
2.3 RUNNING Y OUr APPICALION ... 6
3. PHINEEN OVEIVIBIW ...ttt ettt e et e e st e e st e e e bt e e s nnte e e enbeeesnneeesnneas 7
31 COE PIINE SBIVICE. ... eiiiittieeiitieeeiieeseee et e e st e e st e e s stae e s sseeeassseesssseeessseeesnseeeanseeesnsenans 7
3.2 Configuring a New Printer for the DII COE APoooiiiiiieee e 7
4, SEgMENt DEVEIOPIMENLeeieiiiie e eeee ettt e et e e s sna e e s snseeesnseeesnneeeas 11
4.1 SEOMENE LBYOULSeeeeeeieeeeeeeetiee e e ettt e et e e e e stee e e e e ste e e e e e essbe e e e s snseeeeeasnnneeeeeannnneas 11
4.2 COE TOOIS OVEIVIBW.......eeiiieieeiiiieeeieeesieeesieeesteeesssee s s sseeeesseeesssteessssesesnseeesnseeesnses 12
421 Running the COE Tools From the Command Line..........cccccevveiiiiiinniieenieeee 12
422 COE RUNEIME TOOIS......eiiiiiie ettt sttt e snae e s e nnnee e 12
423 COE DeVelOPer'S TOOIS.ceiiiiiieiiieesiieesiie ettt e e e snaee e e snneee s 12
4.3 BUIldiNg Y OUI SEgMENE........ooiiiiieiiie e e e snree e 13
431 | dentifying and Creating Required SUDIreCtOries..........coovveeeiieeiiiieeiiee e 13
4.3.2 Creating or Modifying Required Segment Descriptor FIes........ccccovcveeieeeiienn. 14
433 INStAliNg @ SEGMENL ... e 16
4.4 CUSLOMIZING Y OUI SEGIMENLooeiiieiiieeaieeesieee sttt e st e e et e e s sste e e ssee e e snneeesnneeesnneas 16
441 AddING MENU TTEIMIS......ooiiiiieiiie ettt nne e e e e e 17
442 AAAING TCONS.....c ittt et et e e snse e e e nneeennes 22
443 RESEIVING @ SOCKEL.......cooieeieeeie e 23
444 Displaying 8MESSAGE........eeieiiiieiieie et 24
Appendix A - SAMPIE SEJMENESooiiiie et sae e e s ee e e snneeens 25
Appendix B - Verifying Segment Syntax and Loading a Segment onto Tape...........ccceeecveeeinenns 27
B.1 Running VerifySeg Against the Sample Segment ..o 28
B.2 Running Testinstall Against the Sample Segment ..o 28
B.3 Running Makelnstall Against the Sample Segment ... 29
Appendix C - Installing the Developer's TOOIKIL...........ccooiiiiiiii e 31
Appendix D - Installing Optional Common Desktop Environment Products............ccccoeceeenneens 33

February 19, 1997 i

DI1.30B.DECIBM.PG-1

List of Tables

Table 1. Segment DESCIPLOr FIlES........ooiiiiieiiee e 14
Table 2. SegInfo DESCIIPLOr SECLIONS......c.uuiiiiiie e siee et e e sae e e snneee s 15

List of Figures

Figure 1. Segment DIreCtOry SEFUCIUIEeeiiieieeiiie ettt 11

i February 19, 1997

DI1.30B.DECIBM.PG-1

Preface

The following conventions have been used in this document:

[HELVETICA FONT]

Used to indicate keys to be pressed. For example, press [RETURN].

Couri er Font

Used to indicate entries to be typed at the keyboard, UNIX
commands, titles of windows and dialog boxes, file and directory
names, and screen text. For example, execute the following
command:

tar xvf /dev/rm/3m

"Quotation Marks"

Used to indicate prompts and messages that appear on the screen.

Italics

Used for emphasis.

February 19, 1997

DI1.30B.DECIBM.PG-1

This page intentionally left blank.

February 19, 1997

DI1.30B.DECIBM.PG-1

11

This document provides an introduction to the capabilities of the Defense Information

1. Writing Programs Using the COE Tools

Overview

Infrastructure (DI11) Common Operating Environment (COE) Version 3.0/B tools for the Digital

UNIX 4.0 Operating System and the Al X 4.1.4 Operating System. These tools consist of a set of

runtime tools and a set of developer'stools.

This document has been designed to help developers start using the DIl COE tools. It explains the
basic use of the tools, regardless of whether they are run from a menu or from the command line.

The document consists of the following sections and appendices:

Descriptions assume familiarity with the C programming language and with the UNIX

Section/Appendix

Page

Application Development Overview
Provides an overview of how to develop an application using DIl COE
Application Programmer Interfaces (APIS).

5

Printer Overview
Describes the COE Printer API, which provides a smple, platform-
independent method for COE applications to print text and graphics data.

Segment Development
Discusses the different types of segments and the process of segment creation.

11

Sample Segments
Describes how to install the sample segments, which can be used to test
segment installation and execution.

25

Verifying Segment Syntax and L oading a Segment onto Tape

Provides examples of how to convert a segment to the DIl COE Integration
and Runtime Specification segment format, verify segment syntax, temporarily
install a segment, and load a segment onto an installation tape.

27

Installing the Developer's Toolkit
Describes how to load the Developer's Toolkit, which contains the
components needed to create segments that use COE components.

31

Installing Optional Common Desktop Environment Products
Describes how to load optional Common Desktop Environment (CDE)
products.

33

development environment.

1.2

Additional Sources of Information

February 19, 1997

DI1.30B.DECIBM.PG-1

Reference the following documents for more information about the D11 COE toolkit:

C Defense Information Infrastructure (DI1) Common Operating Environment (COE)
Version 3.0/B Application Programmer Interface (API) Reference Guide (Digital UNIX and
AlX), DI1.30B.DECIBM.RG-1, Inter-National Research Institute, February 19, 1997

C Defense Information Infrastructure (DI1) Common Operating Environment (COE)
Integration and Runtime Specification Version 2.0, DIl COE I&RTS:Rev 2.0, Inter-National
Research I nstitute, October 23, 1995.

4 February 19, 1997

DI1.30B.DECIBM.PG-1

2. Application Development Overview

Developers may require access to public APIsto ensure an application complies with the DI
COE Integration and Runtime Specification. To use the public APIs, developers must compile
and link the application with the libraries and header files provided in the Developer:s Toolkit.
Remember that your DI | _DEV directory and Motif i ncl ude files and libraries may residein a
different location than in the example compile statements. Public APIs are documented in the DI
COE API Reference Guide (Digital UNIX and Al X).

2.1 Writing Your Application with the DIl COE APIs

To access the DIl COE tools through the provided APIs, you must include the following header
in your application:

#i ncl ude <Dl | Tool s. h>

The standard location for the Developer's Toolkit header is:

DI I _DEV/incl ude

The following is an example of using the DIl COE COEAskUser tool, which is used to display a
guestion and two possible responses to the user. After the user chooses a response, the response
is returned.

#i ncl ude <stdi o. h>
#i ncl ude <Dl | Tool s. h>

/******************************/

/* COEAskUser _exanpl e */

/******************************/
int main(int argc, char *argv[])

{

char bl lab[] = "MY_YES";
char b2_lab[] = "MY_NO';
char message[]="This is ny test Message";

i nt ret val;

/* Call DIl/COE Library Function */
ret_val = COEAskUser, message, bl | ab, b2_|ab);

exit(ret_val);

February 19, 1997

DI1.30B.DECIBM.PG-1

2.2 Building Your Application with the DIl COE APIs

To build your application with DII COE APIs, you must link your application with the
| i bCOETool s. a, i bCOE. a,and i bPrintdient libraries, which are on the DIl COE
Developer's Toolkit tape.

The standard location for the Developer's Toolkit librariesis:

DIl _DEV/Iibs

The actual compile and link statement for an application that uses DII COE APIs should resemble
the following (substitute your location for the DI | _DEV directory and Motif librariesand i ncl ude
files):

cc -Aa -0 COEAskUser _exanpl e COEAskUser _exanple.c -1/h/ DI _DEV/incl ude
-1/usr/include/Mtifl.2 -1/usr/include/ X11R5 -L/h/DlI /1ibs
-1 COETools -1 COE -L/usr/lib/X11R5 -L/usr/lib/Mtifl I Xt -1X11

.2 -1 Xm -

where COEAskUser _exanpl e isthe name of the program being compiled.

2.3 Running Your Application

The DIl COE provides the foundation and infrastructure in which one or more applications run.
To operate under the COE, applications must be formatted properly as segments. The segment is
the basic building block of the COE runtime environment. A segment is a collection of one or
more Computer Software Configuration Items (CSCIs) that are managed most conveniently as a
unit. Segments generally are defined to keep related CSCls together so functionality easily may be
included or excluded. All applications must be put in the DIl COE runtime environment segment
format to be installed onto a DIl COE-compliant machine.

Once an application has been put in the proper segment format, the segment can be installed in a
disciplined way through instructions contained in files provided with each segment. These files are
called segment descriptor files and are contained in a special subdirectory, SegbDescri p, whichis
called the segment descriptor subdirectory. Installation tools process the segment descriptor files
to create a carefully controlled approach to adding or deleting segmentsto or from the system.

Once installed, your application can be invoked in the DIl COE environment in two ways.

(2) running your application from a command shell window or (2) invoking your application from
an icon. The easiest way to test your application isto invoke it in a command shell window. This
gives you easy access to your application for debugging purposes and allows you to check any
diagnostic information your application is generating. Section 4.4, Customizing Your Segment,
describes how to set up your application to be invoked as a menu item or as an icon.

6 February 19, 1997

DI1.30B.DECIBM.PG-1

3. Printer Overview

3.1 COE Print Service

The DIl COE Printer API provides a simple, platform-independent method for DIl COE
applications to print text and graphics data. The API currently consists of 12 C language functions
and 3 executable programs.

The COE print service is based on a client-server architecture. Each printer is managed by asingle
workstation that acts as the server for all print requests for that printer. The print server handles
access controls, queue management, and error notification.

Every COE workstation runs a"printer agent,” which facilitates communication between client
applications and the print server. All printer API functions and executable programs use this
printer agent.

3.2 Configuring a New Printer for the DIl COE API
The DIl COE Printer API consists of the following 12 C language functions:

L ow-level functions
C int close printer(char **file_name, FILE **file_pointer);

C int get_printer_descriptions(char **c_printer_description);
C int get_printer_name(char **c_printer_nane);

C int get_printer_type(char **c_printer_type);

C int open_printer(char *xcp_security_level,
int xi_line_length,
i nt xi _page_Il engt h,
int xi _line_spacing,
i

nt xi _indent,
char **xcp_fil e_nane,
FI LE **xfp);
C int page_break(FlLE **xfp);
C int wite_printer(char **c_string, FILE *fp);

C int wite_printer_array(char **c_string, FILE *fp);

High-level functions
C VDrectPrintFile(char *filename, int prt_rec)

C VD rectPrintMg(**nsg_array, int nlines)
C VPrintFile(char *fil enamne)

C VPrintMsg(char **nsg_array, int nlines)

February 19, 1997 7

DI1.30B.DECIBM.PG-1

NOTE: Low-level and high-level functions should not be used within the same application.

Thecl ose_printer functionisused to conclude a print job and send the data to the printer. If
cl ose_printer isnot caled, the print job will not print.

Theget _printer_descriptions, get_printer_nane, and get _printer_type functionsalow
an application to retrieve the name, the type, and a description of the current default printer. All
three functions return a string value via the pointer that was passed as an argument to the
function. The printer name and description are simple text fields. The printer typeis"ASCII",
"HPCL", or "PostScript".

Theopen_pri nter function isused to send text datato a printer. It establishes a print context,
including the security level, line length, page length, line spacing, and indentation for the print job.
It returns afile pointer through its last argument. Thisfile pointer is used for all subsequent
actions on this print job.

The page_br eak function is used to indicate that the lines of text that follow should begin at the
top of the next page.

Thewite_printer and wite_printer_array functionsare used to send the actual text data
to apreviously opened printer context.

TheVDirectPrintFile and VPrintFile functionsare used to print text datafrom afile on
disk. The vDi rect Pri nt Msg and VPri nt Msg functions are used to print text datafrom an array of
strings in memory. All four functions generate a security banner at the top and bottom of each
output page. On completion, these functions return the internal number of the selected printer or
they return - 1 if the user canceled the job or if an error occurred.

TheVvPrintFil e and VPri nt Msg functions provide the user withaPri nt Chooser window,
which alows the user to select the destination printer. The VDi r ect Pri nt Msg function bypasses
thePrint Chooser window and prints directly to the COE default printer. The

VDi rect Print Fi | e function bypassesthe Pri nt Chooser window and prints directly to the
specified printer. The printer number is specified as a return value from a previous VPr i nt XXX or
VDi r ect Pri nt XXX function call or as - 1 for the COE default printer.

The DIl COE Printer API also consists of the following three executable programs:
C EM_get current_printer_name
C EM_get current_printer_type
C EM_get current_printer_desc
The executable programs provide the same functionality as the C functions of the same name.

Sample printer programs are shown below.
Sample Printer Programs

8 February 19, 1997

DI1.30B.DECIBM.PG-1

#i ncl ude <stdi o. h>
#i ncl ude <Printer/PrintAPl.h>

/* Nunmber of lines in text nessage */
#define TEXT_LINES 6

static char *Print Message[TEXT_LINES] =

{
"Test nmessage, line 1",
"Test nmessage, line 2"
"Test nmessage, line 3"
"Test nmessage, line 4",
"Test nmessage, line 5"
NULL

b

int main(int argc, char *argv[])

if (VPrintMsg(PrintMessage, TEXT_LINES) == -1)

fprintf(stderr, "Printer error.\n");

#include <stdio.h>
#i nclude <Printer/PrintAPI.h>
int main(int argc, char *argv[])
{ int printer_num

[* Print a local text file using the systemdefault printer */

printer_num= VDirectPrintFile("textfilel”, -1);
if (printer_num== -1)

fprintf(stderr, "Printer error.\n");
exit(l);

[* Print the system hosts file using a user -selected printer */
printer_num= VPrintFile("/etc/hosts");

if (printer_num== -1)
fprintf(stderr, "Printer error.\n");
exit(2);

if (printer_num!= -1)

[* Print another text file to the printer that the user just
sel ected */

printer_num= VDirectPrintFile("textfile2", printer_nun;

if (printer_num== -1)

fprintf(stderr, "Printer error.\n");
exit(3);

February 19, 1997 9

DI1.30B.DECIBM.PG-1

This page intentionally left blank.

10

February 19, 1997

DI1.30B.DECIBM.PG-1

4. Segment Development

The following section discusses the different types of segments and the process of segment
creation. Refer to Section 5.0, Runtime Environment, of the DIl COE Integration and Runtime
Soecification for a more detailed explanation of segments.

4.1 Segment Layouts

In the DI1 COE approach, each segment is assigned a unique, self-contained subdirectory. DI
COE compliance mandates specific subdirectories and files underneath a segment directory. These
subdirectories and files are shown in Figure 1. Six segment types exist: Account Group, COTS
(Commercial Off-the-Shelf), Data, Database, Software, and Patch. The precise subdirectories and
files required depend on the segment type. For example, aScri pt s subdirectory is required for an
Account Group segment. The Scri pt s subdirectory normally contains scripts such as. cshrc,

. xsessi on, and . | ogi n. These scripts serve as atemplate for establishing a basic runtime
environment. For software segments, the Scri pt s subdirectory contains environmental extension
files. Some of the subdirectories shown in Figure 1 are required only for segment submission and
are not delivered to an operational site.

Figure 1. Segment Directory Structure

The following runtime subdirectories normally are required, depending on the segment type:

(1) segDescri p, which isthe directory containing segment descriptor files; (2) Scri pt s, whichis
the directory containing script files; (3) bi n, which isthe directory containing executable
programs for the segment; and (4) dat a, which is the subdirectory containing static data items,
such as menu items, that are unique to the segment, but that will be the same for all users on all
workstations.

The SegDescri p directory isrequired for every segment because it contains the installation
instructions for the segment. A segment cannot modify files or resources outside its assigned
directory. Files outside a segment'’s directory are called community files. COE tools coordinate
modification of all community files at installation time, while APIs for the segments that own the

February 19, 1997 11

DI1.30B.DECIBM.PG-1

data are used at runtime. Refer to Section 5.5, Segment Descriptors, of the DIl COE Integration
and Runtime Specification for a detailed explanation of SegDescr i p files.

4.2 COE ToolsOverview

The COE tools were constructed to aid developers in the creation and ultimate installation of DI
COE segments. All tools can be run from the command line, and some can be run from other code
using published APIs.

4.2.1 Runningthe COE Tools From the Command Line

This section provides a brief overview of running the COE tools from the command line.
Reference the following sources for detailed information about the COE tools: Appendix C, COE
Tools, of the DIl COE Integration and Runtime Specification; the Developer's Toolkit release
notes; and the help page provided by the tools.

When run from the command line, the tools are designed to run interactively and accept one or
more command line parameters.

Thetools are used to communicate with the outside world in two ways. First, the tools use the
exit function to set the UNIX st at us environment variable. The st at us return valueisset to 0
for normal tool completion or to - 1 if an error occurs. A st at us return value greater than 0
indicates a completion code that is tool specific.

Second, the tools use st di n and st dout and thus support input and output redirection.
Redirecting st di n alows the tools to receive input from afile or from another program, while
redirecting st dout alows the tools to provide output to other programs.

NOTE: Redirecting st di n isnot aways convenient. The - R command line parameter alows a
tool to read input from aresponse file instead of from st di n.

For example, the COEPrompt tool displays a message and allows the user to type aresponse. The
user's response, then, is written to st dout . The following statement shows how this tool can be
used to ask the user to enter the name of afile:

COEPronpt "Enter Filenane" | M/Prog

Or, the following statement can be used to write the results to afile:

CCEPrompt "Enter Filenanme" > /tnp/tenpfile
422 COE RuntimeTools

Reference Appendix C of the DIl COE Integration and Runtime Specification for a complete
description of DIl COE runtime tools.

423 COE Developer's Tools

12 February 19, 1997

DI1.30B.DECIBM.PG-1

The MakeAttribs, TestInstall, and TestRemove tools must be run asther oot user because they
modify files the user may not own. ConvertSeg, TimeStamp, VerifySeg, and VerUpdate should
also berun asther oot user, athough it is not mandatory. These four tools require the user to
have write permission to the segment against which the tool was executed.

Reference Appendix C, COE Tools, of the DIl COE Integration and Runtime Specification for a
complete description of the DIl COE developer's tools.

4.3 Building Y our Segment

A segment must be built in a disciplined way using instructions contained in files provided with
each segment. These files are contained in a special directory, SegDescr i p, which is the segment
descriptor subdirectory.

This section describes a process to turn an application into a segment so it can be a part of the DI
COE. Asdescribed earlier, a segment is a collection of one or more CSCls most conveniently
managed as a unit.

4.3.1 ldentifying and Creating Required Subdirectories

There are six segment types. Account Group, COTS, Data, Database, Software, and Patch. Each
segment type is assigned its own subdirectory. Precise files depend on the segment type.

The following subdirectories normally are required:

Subdirectory Description

SegDescrip | Subdirectory containing segment descriptor files. This directory is
always required for every segment and contains the installation
instructions for the segment. A segment is not allowed to modify any
files directly for resources it does not own; in other words, a segment
cannot modify files or resources outside an assigned directory. The
DIl COE tools coordinate the modification of all community files at
installation time, while APIs for the segment that owns the data are
used at runtime. This subdirectory contains the installation
instructions for the segment.

Scripts Subdirectory containing script files. This subdirectory will normally
contain scriptssuch as. cshrc, . xsessi on, and .1 ogi n. These
scripts serve as atemplate for establishing a runtime environment.

bi n Executable programs for the segment. These files can be the result of
acompiled program or as aresult of shell scripts, depending on the
type of segment.

dat a Subdirectory for static data items, such as menu items, that are

February 19, 1997 13

DI1.30B.DECIBM.PG-1

unigue to the segment but that will be the same for all users on all
workstations.

Reference Sections 5.0-5.5 of the DIl COE Integration and Runtime Specification for a detailed
explanation of segment directory layout and a description of each SegDescri p file.

14 February 19, 1997

DI1.30B.DECIBM.PG-1

4.3.2 Creating or Modifying Required Segment Descriptor Files

Segment descriptor files are the key to providing seamless and coordinated systems integration

across all segments. Reference Table 1 to determine the descriptor files required for each segment
type. For example, the AcctGrp segment requires Rel easeNot es, Segl nf o, SegNane, and

VERSI ON descriptor filesin the SegDescri p directory. Some segment descriptor information is

provided within the files listed in Table 1.

NOTE: InTable 1, Aggregat e and COE Conp are segment attributes that can be associated

with any type of segment.
Acct COE
File Grp | Aggregate | Comp | COTS | Data | DB | S/\W | Patch

DEINSTALL O O O O O O O
FileAttribs O O O O O O O
Installed I I I I I I I I
PostInstall O O O O O O O R
Prelnstall O O O O O O O O
PreMakel nst O O O O O O O O
ReleaseNotes R R R R R R R R
SegChecksum I I I I I I I I
Seglnfo R R R R R R R R
SegName R R R R R R R R
Validated I I I I I I I I
VERSION R R R R R R R R
R - Required O - Optional | - Created by Integrator or Installation Software

Table 1. Segment Descriptor Files

February 19, 1997

15

DI1.30B.DECIBM.PG-1

Other segment descriptor information is arranged within subsections of the Segl nf o file. Aswith
the descriptor files themselves, some sections of the Segl nf o file are required and others are

optional depending on the type of segment. Table 2 defines the required and optional sections for
each segment type.

Section

Acct
Grp

Aggregate

COE
Comp

COTS

Data

-}
(o9]

Patch

AcctGroup

COEServices

Community

Comm.deinstall

Compat

Conflicts

Data

Database

Direct

FilesList

Hardware

Icons

Menus

I |®mm|(m|O|O | X |[2]|]O|]O|O|O|O

O|0Ofm|O|O|X|Z2|O]|O|[O|O]|]O |O

z|z|m|o|]O|X|[z|l|O|O|O|O |O

oO|0ofm|mm|O | X |Z2]|]O|]O|O|O |O

Z|Zz|m|O|O|X|[m|[O|O|JO|O|O

z|z|m|O|O0 | X |Z2]|]O0O|O|O0O|O|0O |2

o|0oO|lm|o|]O|X|[z|l|O|z|O|O|O

ModName

*

*

*

*

*

*

*oomooxzooooozg

*

ModV erify

*

*

*

*

*

*

*

*

Network

Permissions

Processes

ReqgrdScripts

Requires

Security

I |O0O|xm|O |0 |2

I |O[O0O|O0 |0 |2

I |OlO0O|O0O|Z2 |0

n|joZ2|0 |2 |2

(o222 |=2

(o222 |=2

I |O[O0O|O0 |0 |2

1o |Z2 |0 |0 |2

SegType

*

*

*

*

*

*

*

*

R - Required O - Optional

N - Not Applicable

X - Reserved for Future

*-

Obsolete

Table 2. Seglnfo Descriptor Sections

16

February 19, 1997

DI1.30B.DECIBM.PG-1

4.3.3 Ingtalling a Segment
Follow the procedures below to install a segment after it has been created.
Run VerifySeg

The VerifySeg tool must be run during the development phase to ensure segments use segment
descriptor files properly. Run the VerifySeg tool whenever a segment is created or modified.
When VerifySeg is run to verify a segment, aVval i dat ed fileis created. Thisfileis required to
create the installation media or to use the TestInstall tool on the segment. Reference Appendix C,
COE Tools, of the DIl COE Integration and Runtime Specification for further information about

using VerifySeg.
Run TestInstall

Executing the TestInstall tool is not a mandatory step in the installation process, but it is
recommended. TestInstall smulates an installation on the developer's workstation before actual
installation. The workstation must have the DIl COE kernel installed before running TestInstall.
Reference Appendix C, COE Tools, of the DIl COE Integration and Runtime Specification for
further information about using TestInstall.

Run M akel nstall

The Makelnstall tool is used to write one or more segments to an installation media and to
package the segment(s) for distribution. Makelnstall checks if VerifySeg has been run successfully
on each of the segments and aborts with an error if it has not. Reference Appendix C, COE Tools,
of the DIl COE Integration and Runtime Specification for further information about using

Makel nstall.

Run COElnstaller

The COEIngtaller tool installs a segment from tape, disk, or other electronic media. Reference
Appendix C, COE Tooals, of the DIl COE Integration and Runtime Specification for further
information about using the COEInstaller.

4.4 Customizing Your Segment

Most properly designed segments will not require any extensions to the COE, athough the
segments may need to add menu items and icons. Some segments may need to add special
extensions such as sockets. This subsection describes how to add menu items, icons, and specia
extensions.

February 19, 1997 17

DI1.30B.DECIBM.PG-1

44.1 AddingMenu Items
Menu Entry Format

The Menu Descriptor in the Segl nf o fileis used to specify the name of the segment:=s menu file
and the name of the affected segment=s menu file.

The menu bar, pull-down menus, and cascade menus, as well as the menu items they contain, are
built according to the entries in the named menu file. The format of the entriesisin ASCII with
colon-separated fields. The colons are used as delimiters, and spaces are allowed in the fields.
Each line ends in a colon with no extradata. A # symbol in the first column of aline denotes a
comment line. Comment entries may be placed anywhere in the entry and are not processed by the
parser.

Valid keywords are PDVENU, PDMVENUEND, | TEM, PRVENU, CASCADE, CASCADEEND, APPEND,
APPENDEND, and SEPARATOR. Y ou may use any or all of these keywords. For example, if your
menu does not have separator lines, your Menu Description Entry will not contain a SEPARATOR

keyword.
Each keyword is described in the following paragraphs:

A PDMVENU line contains the following elements:

PDMENU: nane : enable flag : id # :

PDIVENU Keyword that indicates the start of a pull-down menu.

name Text used to name the menu. The menu name is displayed on the menu
bar.

enabl e flag Integer value that indicates whether a menu is enabled or disabled. The

enableflagis1 if amenuisenabled or 0 if it is disabled. A disabled menu
means that no options under that pull-down menu can be selected.

i d# Optional integer value that provides a unique ID number for the menu.
The PDVENU i d# value must be unique within the menu description file.
An absolute value may be provided. However, thei d# field should be left
empty so that relative numbering is used by default.

With relative numbering, ani d# of R1 (or leaving the field blank) sets the
menu's ID number to 1 plusthei d# of the last menu processed. Ani d# of
R2 setsthe menu's ID number to 2 plusthei d# of the last menu
processed.

The following is an example of a PDVENU line:

PDVENU: Map Options @ 1 : Rl :

18 February 19, 1997

DI1.30B.DECIBM.PG-1

A PDVENUEND line contains the following element:

PDIVENUEND:

PDVENUEND Optional keyword that indicates the end of a group of pull-down menu items. If
PDVENUEND is not used to delimit a group of menu items, the group is
presumed to end when the next keyword (other than | TEMor PRVENU) is
encountered.

The following is an example of a PDVENUEND line:

PDIVENUEND:

An | TEMline contains the following elements:

| TEM nane : command : execution type : enable flag : # instances : id# :
check value : security char : autolog flag : print flag : disk flag :

| TEM Keyword that indicates a menu item description line.

name Text used to name the menu item. The item name is displayed in the
pull-down menu.

command Program with space-separated arguments that is launched if the menu item
typeis aprogram. Otherwise, the menu item s called as an application
callback. Because callback functions must be linked into the same
executable as the menu bar, applications cannot use callbacks when adding
items to the system menu bar.

texec ution Integer value that indicates how to execute a command, as follows:
ype
1 = executable program
2 = void callback function with no parameters (not yet
implemented)
3 = Motif calback function (not yet implemented).

enabl e flag Integer value that indicates if amenu itemis enabled or disabled. The
enable flag is1 if amenu itemisenabled or 0 if it is disabled. A disabled
menu item means that the option cannot be selected.

instances Integer value that isused to set the maximum number of times the item
can be executed simultaneously.

i d# Optional integer value that provides a unique ID number for the menu
item. Each | TEM i d# entry must be unique within a PDVENU listing. (I TEM
entriesin a PRVENU must be unique within that PRVENU.) Refer to thei d#
description under the PDVENU keyword listing.

February 19, 1997 19

DI1.30B.DECIBM.PG-1

check val ue Optional integer value that setsthe star and check annotations of a menu

security
char

aut ol og
flag

print flag

item. The possible values are:

no annotation (default)
visible check mark

check mark, but not visible
visible star

= star member, but not visible.

A W NPF O

This element is not yet fully implemented.

Optional character value that is used to determine the lowest security
level under which a menu item can be classified. Valid settings are:

No Classification
Unclassified (default)
Confidential

Secret

Top Secret.

- n O C 2
I mnnn

Optional character value, T or F, used to indicate if the command should
be logged automatically. This element is not yet fully implemented.

Optional character value, T or F, used to indicate if the command should
have a print capahility. This element is not yet fully implemented.

di sk f1agOptional character value, T or F, used to indicate if the command should have disk

access capability. This element is not yet fully implemented.

The following is an example of an | TEMIine:

| TEM Net scape :

Netscape.. : 1 : 1:1: RL: 0: T: F: F: F:

A PRMVENU line contains the following elements:

PRVENU: name

PRVENU

nane

enabl e flag

enable flag : id# :

Keyword that indicates a cascading menu button. It is used to mark where
a cascade menu is to be connected to an upper-level menu.

Text used to name the cascade menu with which to connect. The PRVENU
name is displayed in the pull-down menu.

Integer value that indicates if a cascade menu is enabled or disabled. The
enable flag is 1 if a cascade menu isenabled or 0 if it is disabled. A
disabled cascade menu means that menu options on the cascade menu

20

February 19, 1997

DI1.30B.DECIBM.PG-1

cannot be selected.

i d# Optional integer value that provides a unique ID number for the cascading
menu. Each PRVENU i d# must be unique within a PDMVENU listing. Refer to
thei d# entry under the PDVENU keyword listing.

The following is an example of a PRVENU line:

PRVENU: Software @ 1 @ R1 :

February 19, 1997 21

DI1.30B.DECIBM.PG-1

A CASCADE line contains the following element:

CASCADE: nane :

CASCADE Keyword that indicates the start of a cascade menu. The cascade menu
connects to the PRVENU entry of the same name.

nane Text used to name a cascade menu. The name is used to attach a cascade
menu to a cascading button. This name must be the same as the name field
in the PRVENU entry.

The following is an example of a CASCADE line:

CASCADE: Software :

A CASCADEEND line contains the following element:

CASCADEEND:

CASCADEEND Optional keyword that indicates the end of a group of cascade menu
items. |f CASCADEEND is not used to delimit a group of menu items, the
group is presumed to end when the next keyword (other than | TEMor
PRVENU) is encountered.

The following is an example of a CASCADEEND line:
CASCADEEND:
An APPEND line contains the following elements:

APPEND: narme :

APPEND Keyword that indicates the start of a group of itemsto append to an
existing menu. The menu will be created if it does not exist aready. The
group is appended to the PDMVENU or CASCADE entry of the same name.

name Text used to select the menu to which a group of itemsis appended.

The following is an example of an APPEND line:

APPEND: Options :

22 February 19, 1997

DI1.30B.DECIBM.PG-1

An APPENDEND line contains the following element:

APPENDEND:

APPENDEND Optional keyword that indicates the end of a group of menu itemsto be
appended to an existing menu. If APPENDEND is not used to delimit a group
of menu items, the group is presumed to end when the next keyword
(other than | TEMor PRVENU) is encountered.

The following is an example of an APPENDEND line:
APPENDEND:

A SEPARATCR line contains the following element:

SEPARATOR:

SEPARATOR Optional keyword that indicates that a Motif separator widget isto be
placed in amenu at the point where the keyword occurs.

The following is an example of a SEPARATCR line:

SEPARATOR:
Example of Adding a Menu Item

To add menu items, include the Menus Descriptor in the Segl nf o Segment Descriptor file.
Specify the Menu file you use wish to load and the Menu file you wish to update. The Menu file you
wish to load should be located in Menus directory of the segment. If your segment name is
TstSeg, the file would be located in the Tst Seg/ dat a/ Menus directory. The following example
will add the Test Pr ogr ammenu item to the Sof t war e menu under the SysAdm account group
by updating the SA_Def aul t . mai n menu file.

The following file changes must be made to ensure the TSTCOEAskUser _exanpl e program is
executed from the Sof t war e menu, Test Pr ogr amoption:

Tst Seg/ SegDescri p/ Seglnfo entry:

[Menus]
Tst SegMenu: SA Defaul t. main

Tst Seg/ dat a/ Menus/ Tst SegMenu entry:

r

Software Menu Iltens

r

APPEND : Sof t war e

| TEM : Test Program :TSTCOEAskUser _exanple:1:1:1: Rl
APPENDEND :

February 19, 1997 23

DI1.30B.DECIBM.PG-1

The $SEGVENT keyword must be used in the SegName Segment Descriptor file to specify the
name of the affected segment. In this case it is Syst em Admi ni strati on.

#

SegName For the TstSeg segment

#

$TYPE: SOFTWARE

$NAME: Test Segnent

$PREFI X: TST

$SEGMVENT: Syst em Adni ni stration: SA:/ h/ Acct G ps/ SysAdm

4.4.2 Addinglcons
Icon Entry Format

The Icon Description Entry contains information on all icon-based processes. The entry, or set of
entries, to be used is passed to the CDE. The entry must be available to the CDE at startup as part
of the base set of icons.

Icons are built using the icon section in the Segl nf o file. The entry is a specially formatted icon
description that has colon-separated fields. The colons are used as delimiters, and spaces are
allowed in the fields. Each line ends in a colon with no extra data. A # symbol in the first column
of aline denotes a comment line. Comment entries may be placed anywhere in the file and are not
processed by the parser.

The format of theicon entry is as follows:

ICON file : affected icon file

The affected icon file contains information about both the icon and the executable. The format of
thefileis as follows:

Wndow Title : lcon Path : Executabl e Nane : Comments

(where W ndow Ti t| e isthetitle placed in the application window, | con Pat h isthe full path to
the pixmap/xpm image, Execut abl e Nane is the name of the executable to be launched by the
menu program, and Conment s is an optional comment line)

An example of an affected icon file is as follows:

Edit Profiles : /h/Acct G ps/ SysAdnidata/lcons/Prof.ing: EditProfiles :
This is the EditProfiles icon

24 February 19, 1997

DI1.30B.DECIBM.PG-1

Example of Adding an Icon

To add anicon, include the | cons Descriptor in the Segl nf o Segment Descriptor file. Specify the

icon file you wish to load and the icon file you wish to update. The icon file you wish to load
should be located under the Tst Seg/ dat a/ | cons directory, assuming the segment:s directory
name is Tst Seg. This example will add the Test Pr ogr amicon to the SysAdm account group.

When invoked through the icon, the program TSTCOEAsk User _exanpl e will be executed.
Tst Seg/ SegDescri p/ Seglnfo entry:

[l cons]
Tst Segl cons: SA Def aul t

Tst Seg/ dat a/ | cons/ Tst Segl con fil e:

Tst Segl cons

Test Program : Test Program con: TSTCOEAskUser _exanpl e

Also include the $SEGVENT keyword in the SegNane Segment Descriptor file to specify the name

of the affected segment. In thiscaseit is Syst em Admi ni stration.

SegNane

#

SegName For Test Segment

#

$TYPE: SOFTWARE

$NAME: Test Segnent

$PREFI X: TST

$SEGMVENT: Syst em Adni ni stration: SA:/ h/ Acct G ps/ SysAdm

44.3 Reserving a Socket

To add a service, include the COESer vi ces Descriptor in the Segl nf o Segment Descriptor file.
Also include the $SERVI CES keyword in the Segl nf o Segment Descriptor file to specify the
service to be added. If the port number requested is already in use under another name, an error

will be generated.

NOTE: Port numbersin the range 2000-2999 are reserved for DIl COE segments.

[COESer vi ces]
#

This is my service to add
#

$SERVI CES

irc_ser:3001: upd

February 19, 1997

25

DI1.30B.DECIBM.PG-1

444 Displaying a M essage

This subsection shows an example of how to display a message during the Postinstall process.
Five runtime tools can be used to communicate with a user: COEAskUser, COEIlnstError,
COEMsg, COEPrompt, and COEPromptPasswd. These tools may be used to display information
to the user or to ask the user a question and, based on the result, perform different actions.

In this example, the user is asked questions using the COEAskUser runtime tool, which is
described in Appendix C, COE Tools, of the DIl COE Integration and Runtime Specification.

#!/ bi n/ csh

H= = = = = = =

PostlInstall Tst 1.0 1/95

#

Routine to perform necessary actions after TstSeg has been

| oaded.

H= = = = = = =
COEAskUser -B "RED LAN' "BLUE LAN' "Wich LAN WII You Be Connecting

To"

if ($status == 1) then
COEAskUser -YN "On The RED LAN Do You Want Port #667?
#
Perform Sone Action Based On Results
#
exit(0)
else if ($status == 0) then
COEAskUser -YN "On The BLUE LAN Do You Want Port #67?
#
Perform Sone Action Based On Results
#
exit(0)
el se
CCEMsg "Invalid Return Status”
exit(-1)
endi f
exit(0)

26 February 19, 1997

DI1.30B.DECIBM.PG-1

Appendix A - Sample Segments

A hard copy of a software segment, called TstSeg, has been included as a basic example of a
segment. As shown in Appendix B, Verifying Segment Syntax and Loading a Segment onto Tape,
the sample segment will pass the checks performed by the COE tool VerifySeg. The sample
segment will add the Test Pr ogr ammenu item to the SysAdm account group. When invoked
through the menu item, the program TSTCOEAsk User _exanpl e will be executed.

Refer to Appendix B for instructions on how to validate the Tst Seg segment and load the
segment onto tape.

The layout of the sample segment is:

Tst Seqg:
A o Scripts/ SegDescrip/ bin/ data/

Tst Seg/ Scri pts:
A o .cshrc. TST

Tst Seg/ SegDescri p:
A A DEI NSTALL Rel easeNot es Seglnfo SegName VERSI ON

Tst Seg/ bi n:
A o TSTCOEAskUser _exanpl e

Tst Seg/ dat a:
A - Menus/

Tst Seg/ dat a/ Menus:
A o Tst SegMenu

NOTE: After the segment has passed VerifySeg, a validated file will be added to the
SegDescri p directory.

The scri pt s directory contains the following:

.cshrc. TST

H= = = = = = = = = ==
Define required runtinme environnent variables

H= = = = = = = = = ==
setenv TST_HOVE / h/ Tst Seg

#

Add bin to path

#

set pat h=($path $TST_HOVE bi n)

The SegDescri p directory contains the following:

DEI NSTALL

1/ bin/csh

#

Deinstall For TstSeg
#

February 19, 1997 27

DI1.30B.DECIBM.PG-1

the segment to be deinstalled.

NOTE: The existence of the DEI NSTALL, evenif it does not contain any instructions, allows

Rel easeNot es

#

Rel ease Notes For Tst Seg

#

This is my Test Segnent For Exanpl e Purposes

Segl nfo

#

Seglnfo File For TstSeg
#

[Har dwar e]
$CPU: | BM
$MEMORY: 200
$DI SK: 131

[Menus]
Tst SegMenu: SA Defaul t. main

[Regrd Scripts]
.cshrc:.cshrc. TST

[Security]
UNCLASS

SegNane

#

SegName For Test Segment

#

$TYPE: SOFTWARE

$NAME: Test Segnent

$PREFI X: TST

$SEGMVENT: Syst em Adni ni stration: SA:/ h/ Acct G ps/ SysAdm

Tst SegMenu

APPEND : Sof t war e
| TEM :Test Program :TSTCOEAskUser _exanple:1:1:1: Rl
APPENDEND:

VERSI ON

#

Version Nunber For Tst Seg
#

1.0.0.1 : 05/31/96: 10:08

28

February 19, 1997

DI1.30B.DECIBM.PG-1

Appendix B - Verifying Segment Syntax and
L oading a Segment onto Tape

This appendix provides examples of how to convert a segment from the Joint Maritime Command
Information System (JMCIS) format to the DIl COE Integration and Runtime Specification
segment format, verify segment syntax, install a segment temporarily, and load a segment onto an
installation tape. The segment verification and loading process involves the following steps:

STEP1: RuntheVerifySegtool. Run VerifySeg to validate that the segment conforms to
the rules for defining a segment (i.e., to verify the segment syntax).

STEP2: Runthe TestInstall tool. Run TestInstall against the sample segment to install the

segment temporarily. This step is optional; if you choose not to run TestInstall,
proceed to STEP 5.

STEP 3. RuntheMakelnstall tool. Run Makel nstall to load the segment onto an
installation tape. After the segment is loaded onto tape, it is ready to be installed
using the Segment Installer option from the System Administration menu bar.

Subsections B.1-B.3 show how to perform these steps against the TstSeg sample software
segment, which is described in Appendix A, Sample Segments.

NOTE: Inthe subsections below, the VerifySeg, Testinstall, and Makel nstall tools are being
run against the Tst Seg sample segment. The output of each command will vary depending on
the segment being converted. Note the following severity indicators:

(F) indicatesa FATAL ERROR (D indicatesa DEBUG statement
(W indicatesa WARNING (V) indicatesa VERBOSE statement
(E) indicates an ERROR (O indicates an ECHO statement

NOTE: Inthe following subsections, boldface text indicates information that the user must
input.

February 19, 1997 29

DI1.30B.DECIBM.PG-1

B.1 Running VerifySeg Against the Sample Segment

hkhkkkhkhhkhkhhhhhkhhhhkhhhhhhhdhhhhdhhhdddhdhddhdhdddhdhhddhdhdddhdddrhdhddrhdddrhdhdrdhdrdrddrrddrx*

VerifySeg -p /honme2/ Test Segs Tst Seg

Results of verification (/home2/ Test Segs/ Tst Seg) :Total s

Errors: 0
V\Ar ni ngs: 0

hkhkkkhkhhkhkhkhhhhhhhhhhhdhhhhdhhhhdhhdhddhdhddhdhdddhdhhddhdhdddhdddrhdhddrhdddrhdhdrdhdrdrddrrddrx*

B.2 Running TestInstall Against the Sample Segment

hkhkkkhkhhkhkhhhhhhhhhhhhhhhhdhhhhdhhhdddhdhddhdhdddhdhhddhddddhdddrhdhddrhdddrhdhdrdhdrdrddrrdrrx*

Testinstall -p /home2/ Test Segs Tst Seg

hkhkkkhkhhkhkhhhkhhhhhhhhhhhhhdhhhhdhhhdddhdhddhdhdhddhdhhddhdhdddhdddrhdhddrhdrdrhdhdrdhdrdrddrrddrx*

Testlnstall - Version 1.0.0.4

hkhkkkhkhhkhkhkhhkhhkhhhhkhhhhhhhdhhhhdhhhdddhdhddhdhdhddhdhhdhdhdddhdddrhdhddrhdrdrhdhdrdhdrdrddrrddrx*

The foll owi ng opti ons have been sel ect ed:

hkhkhkkhkhhkhkhhhkhhhhhhhhhhhhhdhhhhdhhhdddhdhddhdhdddhdhhdhdhdddhdddrhdhddrhdddrdhdhdrdhdrdrddrrdrrx*

Print warni ng messages.

hkhkhkkhkhhkhkhkhhkhhhhhhkhhhhhhhdhhhhdhhhdddhdhddhdhdddhdhhddhdhddhdhddrhdhddrhdddhdhdrdhdrdrddrrddrx*

Segments to be Testlnstall ed:

hkhkhkkhkhhkhkhkhhkhhhhhhhhhhhhhdhhhhdhhhddhdhddhdhdhddhdhdddhdhdddhdddrhdhddrhdrdrhdhdrdhdrdrddrrddrx*

Segment: Tst Seg Pat h: / home2/ Test Segs

*************V\ARNI ’\G\‘************

Testinstall may nodify COE files already in use. This may cause unpredictabl e
results if COE processes are already running. Make sure no other COE processes
are running before using Testlnstall.

Do you want to continue with the Testlnstall? (y/n): vy

Processi ng Tst Seg

The segnent /home2/ Test Segs/ Tst Seg al ready uses the DIl CCE standard.
Convert Seg i s not required.

Successfully ran preprocessor on segment Tst Seg

Do you want to run Prelnstall for Segment TstSeg? (y/n): vy
Calling Prelnstall Script
effective O real O

Do you want to run Postlnstall for Segnent TstSeg? (y/n): vy
effective O real O
Successful Installation of TstSeg

30 February 19, 1997

DI1.30B.DECIBM.PG-1

hkhkhkkhkhhkhkhkhhhhhhhhhhhhhhhdhhhhdhhdhddhdhddhdhdddhdhddhddddhdhddrhdddrhdddhdhdrdhdrdrddrrddrx*

February 19, 1997 31

DI1.30B.DECIBM.PG-1

B.3 Running M akel nstall Against the Sample Segment

kkhkhkkkhhkkkhhhkkhhhkkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhdhhkhkhhkhkhkkhkkkk*x

Makel nstall -p /home2/ Test Segs Tst Seg

1 Wite to disk

2 /dev/rnmt/3m 3 MBytes (HP DAT DT-30)

3 /dev/rnt/3m 680 MBytes (HP DAT DT- 30)

4 /dev/rmt/3m 1360 MBytes (HP DAT DT- 60)

5 /dev/rnt/3m 2048 MBytes (HP DAT DT-90)

6 /dev/rnt/3m 2730 MBytes (HP DAT DT-120)

7 [/dev/rnt/3m 4096 MBytes (HP DAT DT-210)

8 /dev/rnmt/stn 60 MBytes (HP 1/4 inch DC600 Cartridge)
9 /dev/rnmt/stn 150 MBytes (HP 1/4 inch DC6150 Cartridge)
10 /dev/rmt/stn 250 MBytes (HP 1/4 inch DC6250 Cartridge)
11 /dev/rmt/stn 525 MBytes (HP 1/4 inch DC6525 Cartridge)
12 /dev/rmt/1m 1225 MBytes (HP 54M Exabyt e)

13 /dev/rmt/1m 2560 MBytes (HP 112M Exabyte)

14 /dev/nrstO 680 MBytes (Sun DAT DT- 30)

15 /dev/nrstO 1360 MBytes (Sun DAT DT-60)

16 /dev/nrstO 2048 MBytes (Sun DAT DT-90)

17 /dev/nrstO 2730 MBytes (Sun DAT DT-120)

18 /dev/nrstO 4096 MBytes (Sun DAT DT-210)

19 /dev/nrstO 60 MBytes (Sun 1/4 inch DC600 Cartridge)
20 /dev/nrstO 150 MBytes (Sun 1/4 inch DC6150 Cartri dge)
21 /dev/nrstO 250 MBytes (Sun 1/4 inch DC6250 Cartridge)
22 /dev/nrstO 525 MBytes (Sun 1/4 inch DC6525 Cartridge)
23 /dev/nrstO 1225 MBytes (Sun 54M Exabyte)

24 /dev/nrstO 2560 MBytes (Sun 112M Exabyt e)

25 /dev/nrtape 680 Miytes (SA DAT DT- 30)

26 /dev/nrtape 1360 Miytes (SA DAT DT-60)

27 [dev/nrtape 2048 Moytes (SG DAT DT-90)

28 /dev/nrtape 2730 Moytes (SGE@ DAT DT-120)

29 /dev/nrtape 4096 Moytes (SGE DAT DrT-210)

30 /dev/rnt0.1 1225 Moytes (Sun 54M Exabyte)

31 /dev/rnt0.1 2560 Moytes (Sun 112M Exabyt e)

32 /dev/ nrntOh 680 Miytes (Sun DAT DT- 30)

33 /dev/ nrntOh 1360 Miytes (Sun DAT DT- 60)

34 /dev/ nrntOh 2048 Moytes (Sun DAT DT-90)

35 /dev/ nrntOh 2730 Moytes (Sun DAT DT-120)

36 /dev/nrntOh 4096 Moytes (Sun DAT DT-210)

37 O her

Enter device to use (1, 2, etc) or type
Enter nane of the output file or type '

toquit. 1
to quit. TstSeg

q

q
Processi ng Segnent: /hone2/ Test Segs/ TstSeg ...

Enter your nanme for the Tape Header: John Smith

Enter a serial nunber for the Tape Header: 1

Enter any desired coment to put in the Tape Header (up to 255 characters)
Test Load of Tst Seg

32 February 19, 1997

DI1.30B.DECIBM.PG-1

Tape I ndex Attr Type Hardware Class Directory (Segnent Name - Version)

1 1 (0] S HP U /home2/ Test Segs/ Tst Seg
Test Segnment - 1.0.0.1
Attr : PS - Parent Segnent CS - Child Segnent 0 - O her
Type : A - Acct Goup S - Software C - COors
D - Data P - Patch
Cass: U - Unclassified C - Confidential S - Secret T - Top Secret

Nunber of segnments to wite to tape: 1
Space required: 0.114 MByte (including Tape Header and Tabl e of Contents)

hkhkhkkhkhhkhkhhhhhhhhhhhhhhhhdhhhhdhhhdddhdhdddhdhdddhdhhddhdhdddhdddrhdhddrhdddrhdhdrdhdrdrddrrddrx*

*khkkkkkk*x*k Insert tape #l *k k) kkkx*k
Press any key to conti nue.

0+1 records in.

1+0 records out.

khkkkkhkkkhkhkk*k DII Install tape COﬂp| eted khkkkhkhkkhkkhkkk*k

February 19, 1997 33

DI1.30B.DECIBM.PG-1

Appendix C - Installing the Developer's Toolkit

The Developer's Toolkit contains the components needed to create segments that use DIl COE
components. The Developer's Toolkit is distributed on magnetic mediain relative tar format.

Developer's tools are delivered separate from the kernel tape. By default, these tools are located
underneath the/ h/ DI I _DEV/ bi n directory and are distributed as part of the Developer's Toolkit.
Developer's tools can be run from the command line, and some can be run from other code using
published APIs.
As distributed, the toolkit contains the following:

C AP libraries

C C header filesfor public APIs

C On-line UNIX manual pages for some APIs

C COE development tools

C Sample segments

C Environment setup script.

The toolkit does not contain any products that require alicense (e.g., compilers, editors, relational
database management systems). The developer is responsible for acquiring these items as needed.

Follow the steps below to install the Developer's Toolkit.
STEP 1. Login.Loginastheroot user and enter the appropriate password.

STEP2: Changedirectoriesand install the Developer:zs Toolkit. Type the following
commands:

cd /h (or directory of choice) [RETURN]

tar xvfp [tape device] [RETURN]

NOTE: You must update the environment variable LD_LI BRARY_PATH to include Motif
librariesin order to run graphical tools. For example:

set LD LI BRARY_PATH=($LD LI BRARY_PATH /usr/lib/Mtifl.2)

34 February 19, 1997

DI1.30B.DECIBM.PG-1

Developers may install the toolkit on the disk in any directory they desire. After thetar is
performed, all of the components of the Developer's Toolkit will reside under the Dl | _DEV
directory. These components are listed below:

datafiles Dl | _DEV/ data

public header files DI I _DEV/ i ncl ude

public libraries DI _DEV/Iibs
executables DI | _DEV/ bin
manual pages Dl | _DEV/ man
scripts DI | _DEV/ Scripts
examples DI | _DEV/ exanpl es

sample segments Dl | _DEV/ Sanpl eSegnent s

Developers should include Di | _DEV/ bi n in the path environment variable for their development
environment. The DI | _DEV/ nan directory should also be included in the search path for UNIX
manual pages. Developers must source the Make TOOLSEnv environment setup script. Thiswill set
up the following four environment variables. MACHI NE, MACHI NE_CPU, MACHI NE_CS, and
TOOLS_HOME. Read the README file at the top level of the DI | _DEV directory for more information
about these environment variables.

Developers are encouraged to submit tools to the COE community for inclusion in the
Developer's Toolkit. All tools submitted must be license and royalty free and must include a
manual page for on-line documentation. Developers who want to release source code for their
contributed tools may do so, and the source code for each tool will be organized under the

DI | _DEV/ src directory.

Reference Section 6.0, Development Environment, of the DIl COE Integration and Runtime
Specification for a more detailed explanation of the development environment.

February 19, 1997 35

DI1.30B.DECIBM.PG-1

Appendix D - Installing Optional Common

Desktop Environment Products

The Common Desktop Environment (CDE) provides windows, workspaces, controls, menus, and
afront panel to help users organize and manage work. Follow the steps below to install optional

CDE products:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEPS:

STEP 6:

STEPT7:

Login. Loginasr oot .

Insert the CD into thedrive. Insert the TriTeal Enterprise Desktop (TED) CD
into the CD drive.

M ount the CD. Mount the CD onto / cdr om

Changeto the cdr omdirectory. Type the following command to change to the
cdr omdirectory:

cd /cdrom[RETURN]
Ensurethat the Xwindow DI SPLAY environment variableis set. Typethe
following command to ensure that the Xwindow DI SPLAY environment variable is
Set:

setenv DI SPLAY uni x: 0.0 [RETURN]

Ensure that Xwindow clients can connect to the display. Type the following
command to ensure that Xwindow clients can connect to the display:

xhost + [your machi ne nane]

Select theitemsto install. Type the following command:
.linstall [RETURN]

The Package Sel ecti ons window appears.

The following check boxes appear in the Package Sel ecti ons window. Select
the items you want to install.

C TED Runtime
C TED Development
C TED Fax

C TED Locaes

36

February 19, 1997

DI1.30B.DECIBM.PG-1

C TED Vison

C WInTED.

Next to each of the checkboxes is a push button that can be used to customize the
installation for that particular item.

For example, when installing the TED runtime item, you can configure it to install
any of the following four items:

C

C

C

C

TriTeal Enterprise Desktop
TED Postscript manuals
TED help

TED manual pages.

NOTE: The TriTeal Enterprise Desktop MUST NOT be installed. Thisitem, instead, is
installed with the kernel. If you reinstall this item, you will remove the CDE segment.

STEP8: Ingtall the selected items. Select the YES - Edit System Fil es option after
selecting all the itemsto install. Execute | nst al | from the main screen.

STEP9: Execute post install. Select the Execut e Post I nstal |l optionfromtheFil e
pull-down menu to execute post install.

STEP 10: Exit the menu. Select the Exi t option fromtheFi | e menu.

STEP 11: Removethe CD. Type the following commands to unmount and remove the CD:

cd / [RETURN]

unount /cdrom[RETURN]

February 19, 1997

37

